编号
简单乘法原理。
先从小到大排序,然后答案就是:
$$Ans=\prod_{i=1}^n (a_i-i+1)$$
如果有元素 $\le 0$ 就直接输出 0。
时间复杂度 $O(n\log n)$。
代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
| #include<iostream> #include<cstdio> #include<algorithm> #define ll long long using namespace std;
const ll N=50,mo=1e9+7;
ll n,ans;
ll a[N+5];
inline ll read() { ll ret=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9') {if(ch=='-') f=-f;ch=getchar();} while(ch>='0'&&ch<='9') {ret=(ret<<3)+(ret<<1)+ch-'0';ch=getchar();} return ret*f; }
void write(ll x) { static char buf[22];static ll len=-1; if(x>=0) { do{buf[++len]=x%10+48;x/=10;}while(x); } else { putchar('-'); do{buf[++len]=-(x%10)+48;x/=10;}while(x); } while(len>=0) putchar(buf[len--]); }
int main() {
n=read();
for(ll i=1;i<=n;i++) { a[i]=read(); }
sort(a+1,a+n+1);
ans=1; for(ll i=1;i<=n;i++) { if(a[i]-i+1<=0) {ans=0;break;} ans=(ans*(a[i]-i+1))%mo; }
write(ans);
return 0; }
|